Несмотря на впечатляющие возможности больших языковых моделей (LLM), таких как GPT-4o и Claude, в написании эссе и решении уравнений за считанные секунды, они всё ещё несовершенны. Последний пример, ставший вирусным мемом, демонстрирует, что эти, казалось бы, всезнающие ИИ, не могут правильно посчитать количество букв «r» в английском слове «strawberry» (клубника).
Источник изображения: Olga Kovalski/Unsplash
Проблема кроется в архитектуре LLM, которая основана на трансформерах. Они разбивают текст на токены, которые могут быть полными словами, слогами или буквами, в зависимости от модели. «LLM основаны на этой архитектуре трансформеров, которая, по сути, не читает текст. Когда вы вводите запрос, он преобразуется в кодировку», — объясняет Мэтью Гуздиал (Matthew Guzdial), исследователь искусственного интеллекта и доцент Университета Альберты, в интервью TechCrunch. То есть, когда модель видит артикль «the», у неё есть только одно кодирование значения «the», но она ничего не знает о каждой из этих трёх букв по отдельности.
Трансформеры не могут эффективно обрабатывать и выводить фактический текст. Вместо этого текст преобразуется в числовые представления, которые затем контекстуализируются, чтобы помочь ИИ создать логичный ответ. Другими словами, ИИ может знать, что токены «straw» и «berry» составляют «strawberry», но не понимает порядок букв в этом слове и не может посчитать их количество. Если задать вопрос GPT, «сколько раз встречается буква R в слове strawberry», бот выдаст ответ «3».
«Сложно определить, что именно должно считаться словом для языковой модели, и даже если бы мы собрали экспертов, чтобы согласовать идеальный словарь токенов, модели, вероятно, всё равно считали бы полезным разбивать слова на ещё более мелкие части, — объясняет Шеридан Фойхт (Sheridan Feucht), аспирант Северо-восточного университета ( Массачусетс, США), изучающий интерпретируемость LLM. — Я думаю, что идеального токенизатора не существует из-за этой нечёткости». Фойхт считает, что лучше позволить моделям напрямую анализировать символы без навязывания токенизации, однако отмечает, что сейчас это просто невыполнимо для трансформеров в вычислительном плане.
Всё становится ещё более сложным, когда LLM изучает несколько языков. Например, некоторые методы токенизации могут предполагать, что пробел в предложении всегда предшествует новому слову, но многие языки, такие как китайский, японский, тайский, лаосский, корейский, кхмерский и другие, не используют пробелы для разделения слов. Разработчик из Google DeepMind Йенни Джун (Yennie Jun) обнаружил в исследовании 2023 года, что некоторым языкам требуется в 10 раз больше токенов, чем английскому, чтобы передать то же значение.
В то время как в интернете распространяются мемы о том, что многие модели ИИ не могут правильно написать или посчитать количество «r» в английском слове strawberry, компания OpenAI работает над новым ИИ-продуктом под кодовым названием Strawberry, который, как предполагается, окажется ещё более умелым в рассуждениях и сможет решать кроссворды The New York Times, которые требуют творческого мышления, а также решать сверхсложные математические уравнения.
Источник: 3DNews