Волновая природа света была доказана в знаменитом двухщелевом опыте Томаса Юнга ещё в 1801 году. Много позже учёные доказали, что при этом свету (фотонам) остаются присущи свойства элементарных частиц. Но Юнг первым показал, что в пространстве свет ведёт себя как волна. И только спустя 222 года физики смогли поставить эксперимент, который доказывает, что свет ведёт себя как частица и волна не только в пространстве, но и во времени.
Источник изображения: Imperial College London
Эксперимент был поставлен в Имперском колледжа Лондона. В оригинальном опыте Юнга свет пропускался через две расположенные рядом узкие щели. На экране за щелями возникал целый ряд штрихов, что объясняется волновыми свойствами света — волны из двух щелей взаимодействовали друг с другом и либо усиливали друг друга, либо гасили с разной степенью интенсивности. Тем самым волновая природа света была доказана при распространении волн в пространстве.
С оценкой волновых свойств света во времени всё было намного сложнее. Скорость света слишком большая для эксперимента. Этим даже обычно пренебрегали при расчётах. За правило бралось, что свет во времени ведёт себя как частица. Группе физиков удалось воссоздать двухщелевой эксперимент, который доказал волновую природу света во времени.
В новом опыте две щели были сделаны из такого материала, как 40-нм плёнка из оксида индия-олова (популярный материал для изготовления дисплеев для смартфонов, например). Плёнка была нанесена на стеклянную подложку, покрытую 100-нм слоем золота. Предложенная «щель» играла роль зеркала, меняющего отражающие свойства с 8 % до 60 % по сигналу (после подачи импульса накачки).
Скорость переключения зеркал-щелей оказалась феноменальной — считанные фемтосекунды. Процессы интерференции света оказалось возможным наблюдать во времени — волны взаимодействовали после прохождения щелей и усиливали либо гасили друг друга, но только это происходило не с разложением в пространстве, а на шкале времени. Щели действовали как затворы в фотоаппарате, срабатывая с такой скоростью, что каждый раз через них проникала лишь часть волны. Подобное, например, позволит измерять свойства света за один период волны.
Поставленный эксперимент открывает путь к новой спектроскопии. Это пригодится при изучении астрофизических явлений, к примеру, чёрных дыр. Также временная интерференция света — это новые возможности в области квантовых вычислений и даже в области обычной фотоники — в оптических интерфейсах или процессорах. А есть ещё темпоральные или временные кристаллы и много неизученных областей, где к новым открытиям пока даже не знают, как подступиться.
Источник: 3DNews