Пятимесячное расследование компании SemiAnalysis показало, что специализированные ИИ-ускорители серии AMD MI300X не раскрывают свой потенциал из-за серьёзных проблем в работе программного обеспечения. Этот факт делает все усилия компании по навязыванию жёсткой конкуренции Nvidia, доминирующей на рынке аппаратного обеспечения для ИИ, бессмысленными.
Источник изображения: The Decoder
Исследование показало, что программное обеспечение AMD изобилует ошибками, которые делают обучение моделей ИИ практически невозможным без значительной отладки. Таким образом, пока AMD работает над обеспечением качества и простоты использования своих ускорителей, Nvidia продолжает увеличивать разрыв, развёртывая новые функции, библиотеки и повышая производительность своих решений.
По итогам обширных тестов, включая тесты GEMM и одноузловое обучение, исследователи пришли к выводу, что AMD не в состоянии преодолеть то, что они называют «неприступным рвом CUDA» — сильное преимущество в виде программного обеспечения, которым обладают ускорители Nvidia.
Источник изображения: SemiAnalysis
AMD MI300X «на бумаге» выглядят впечатляюще: 1307 Тфлопс в вычислениях FP16 и 192 Гбайт памяти HBM3. Для сравнения, ускорители Nvidia H100 обладают производительностью 989 Тфлопс и имеют только 80 Гбайт памяти. Однако новое поколение ИИ-ускорителей Nvidia H200 с конфигурациями до 141 Гбайт памяти сокращает разрыв в объёме доступного буфера памяти. Кроме того, системы на базе ускорителей AMD также предлагают более низкую общую стоимость владения благодаря более низким ценам на такие системы и более доступной поддержке сетевой инфраструктуры.
Источник изображения: SemiAnalysis
Однако эти преимущества мало что значат на практике. По данным SemiAnalysis, сравнение «голых» спецификаций похоже на «сравнение камер, когда просто проверяешь количество мегапикселей у одной и другой». AMD, отмечают аналитики, таким образом «просто играет с цифрами», но её решения не обеспечивают достаточный уровень производительности в реальных задачах.
Исследователи отмечают, что им пришлось напрямую работать с инженерами AMD, чтобы исправить многочисленные ошибки в ПО для получения пригодных для оценки результатов тестов. В то же время системы на базе ускорителей Nvidia работали гладко и без каких-либо дополнительных настроек.
«С OOBE от AMD (опыт, который пользователь получает при получении продукта после распаковки или при запуске установщика и подготовке к первому использованию, так называемый "опыт из коробки" — прим. ред.) очень сложно работать. И для перехода к пригодному к использованию состоянию [оборудования] может потребоваться немало терпения и усилий», — пишут эксперты.
Особенно показательным для SemiAnalysis оказался случай, когда компания TensorWave, крупнейший поставщик облачных решений на базе графических процессоров AMD, была вынуждена предоставить команде инженеров AMD бесплатный доступ к своим графическим процессорам — тому же оборудованию, которое TensorWave приобрела у AMD — только для устранения проблем с программным обеспечением.
Для решения проблем эксперты SemiAnalysis рекомендуют генеральному директору AMD Лизе Су (Lisa Su) более активно инвестировать в разработку и тестирование программного обеспечения. В частности, они предлагают выделить тысячи чипов MI300X для автоматизированного тестирования (аналогичному подходу следует Nvidia для своих ускорителей), упростить сложные переменные среды, одновременно внедрив более эффективные настройки для ускорителей по умолчанию. «Сделайте готовый опыт пригодным к использованию!» — призывают специалисты.
Представители SemiAnalysis в своём отчёте признаются, что желают успеха компании AMD в конкуренции с Nvidia, но отмечают, что «к сожалению, для этого ещё многое предстоит сделать». Без существенных улучшений программного обеспечения AMD рискует ещё больше отстать, поскольку Nvidia готовится к массовому выпуску ускорителей нового поколения Blackwell. Хотя, по сообщениям, этот процесс у Nvidia также проходит не совсем гладко.
Источники: 3DNews